Numerical indefinite integration of functions with singularities
نویسندگان
چکیده
We derive an indefinite quadrature formula, based on a theorem of Ganelius, for Hp functions, for p > 1, over the interval (−1, 1). The main factor in the error of our indefinite quadrature formula is O(e−π √ ), with 2N nodes and 1 p + 1 q = 1. The convergence rate of our formula is better than that of the Stenger-type formulas by a factor of √ 2 in the constant of the exponential. We conjecture that our formula has the best possible value for that constant. The results of numerical examples show that our indefinite quadrature formula is better than Haber’s indefinite quadrature formula for Hp-functions.
منابع مشابه
Infinite product representation of solution of indefinite SturmLiouville problem
In this paper, we investigate infinite product representation of the solution of a Sturm- Liouville equation with an indefinite weight function which has two zeros and/or singularities in a finite interval. First, by using of the asymptotic estimates provided in [W. Eberhard, G. Freiling, K. Wilcken-Stoeber, Indefinite eigenvalue problems with several singular points and turning points, Math. N...
متن کاملThree-Dimensional Interfacial Green’s Function for Exponentially Graded Transversely Isotropic Bi-Materials
By virtue of a complete set of two displacement potentials, an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic bi-material full-space was presented. Three-dimensional point-load Green’s functions for stresses and displacements were given in line-integral representations. The formulation included a complete set of transformed stress-p...
متن کاملNumerical indefinite integration by double exponential sinc method
We present a numerical method for approximating an indefinite integral by the double exponential sinc method. The approximation error of the proposed method with N integrand function evaluations is O(exp(−c1N/ log(c2N))) for a reasonably wide class of integrands, including those with endpoint singularities. The proposed method compares favorably with the existing formulas based on the ordinary ...
متن کاملExtended Gaussian quadratures for functions with an end-point singularity of logarithmic type
The extended Gaussian quadrature rules are shown to be an efficient tool for numerical integration of wide class of functions with singularities of logarithmic type. The quadratures are exact for the functions pol1n−1(x) + lnx pol2n−1(x) , where pol1n−1(x) and pol2n−1(x) are two arbitrary polynomials of degree n−1 and n is the order of the quadrature formula. We present an implementation of num...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 70 شماره
صفحات -
تاریخ انتشار 2001